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Texture Synthesis

> Texture Synthesis by Non-Parametric Sampling

> Efros and Leung
> ICCV 1999

> Fast Texture Synthesis using Tree-Structured Vector
Quantization

> Wei and Levoy
> SIGGRAPH 2000

> Synthesizing Natural Textures
> Ashikhmin
> 2001 Symposium on Interactive 3D Graphics



Texture Synthesis & Transfer

> Image Quilting for Texture Synthesis and Transfer

> Efros and Freeman
> SIGGRAPH 2001

> Image Analogies

> Hertzmann et al.
> SIGGRAPH 2001



Some Questions

> What are image textures?
> What is texture synthesis?
> What is a non-parametric method?

> What is a Markov random field model?



Texture

> Spatially repeating patterns
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Parametric and Non-Parametric Sampling
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BL “Text” Synthesis 2%t i3

> Markov chain

> One dimensional
> Given the present state, the future and past states are
independent

> n-gram: encode nwords into a state
> Sample text, e.g., a book

> Probability tables

> [ 2> spent
> spent 2 an
> an 2 Interesting

S e
"I spent an interesting evening recently with a grain of salt”



http://bugscope.beckman.uiuc.edu/members/2004-038/data/presets/preset-7-640x480.jpg

Extension to Two Dimensions

> How to define a unit (a letter or a word) of
synthesis and its context (n-gram) for texture?

> How to construct a transition probability?

> How to linearize the synthesis process in 2D?
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Markov Random Fields and Images
> The probability distribution of brightness values for a

pixel given the brightness values of its spatial
neighborhood is independent of the rest of the image
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Texture Synthesis

Text 2 Texture

Markov chains = Markov random fields

N-gram > Square window around a pixel
Sample text > Sample texture

Exact match > Approximate match

> Probability tables

> Hard to construct them explicitly
> Through non-parametric sampling
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Efros & Leung Algorithm

w(p)

non-parametric
sampling

il

Input image

Synthesizing a pixel

> Assuming Markov property, compute P(p|w(p))

> Building explicit probability tables is infeasible

> Instead, search the input imagefor all similar neighborhoods —
p.d.f.for p

> To sample from this p.d.7., just pick one match at random

Efros's slide B
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Create a Pool and Get a Histogram

> The pool of patches
{w C Isa,mple L d(w(p),w) < (1 + €)d(w(p), wpest)
Whest = Al majn d(w(p),w) C Isa'mple

> The center pixel values of patches in the pool give us a
histogram for p, which can then be sampled, either
uniformly or weighted by d
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Neighborhood Window
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Window Size
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Results from Efros & Leung Project Webpage
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The Efros & Leung algorithm

Non-parametric sampling
Results are good

_imitations:
> Slow

> Frontal parallel?
-

non-stationary
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Conclusion

> Markov random field model
> Seems to be a good model for image textures

> Two important issues
> Computation time

> How to incorporate more complicated structures into
it
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Related Work

> Fast Texture Synthesis using Tree-Structured
Vector Quantization

> Wei and Levoy
> SIGGRAPH 2000

> Synthesizing Natural Textures
> Ashikhmin
> 2001 Symposium on Interactive 3D Graphics
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How to Accelerate

> Wel & Levoy
> Raster scan ordering

> |_2 NOrm sample texture
A : Neighborhood N

p

(a)
(b) (c) (d)
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Neighborhood Sizes

> Synthesis results with different neighborhood
sizes
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Multiresolution Synhesis -from Low to High

same neighborhood, different numbers of pyramid levels

1 level

Gaussian pyramid:
blur and downscale

3 levels
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use full neighborhood at low-resolution level 25



Further Acceleration

> Find an approximate solution to the nearest-
point searching problem: Tree-Structured
Vector Quantization (TSVQ)
> Build a binary-tree-structured codebook
> Synthesis: best-first traversal
> Nearest point: centroid at the reached leaf node

centroidi®§ R ) A . centroid R
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Synthesis Using TSVQ

1 T,
N RREimttimicaaet
fiTERsases imu
1= dugy nan
(a) D103
Algorithm Training Time | Synthesis Time
Efros and Leung none 1941 seconds
Exhaustive Searching none 503 seconds
TSVQ acceleration 12 seconds 12 seconds

[Wei & Levoy], on a 195MHz R10000 processor
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spiral synthesis
ordering
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Blur Out Finer Details

=

Wei & Levoy algorithm
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Sometimes We Do Need Verbatim Copy

Wei & Levoy

input image

candidate pixel
and comparison
region

Ashikhmin

input image

U

completed portion (grey)

i3

="n

completed portion (grey)

output image

output image
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Ashikhmin's algoritm
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Region-growing Nature of Ashikhmin’s
Algorithm
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Ashikhmin's algorithm
with user control

input image

iat
ﬁﬂ

completed portion (grey)

output image

target image




Conclusion

> Markov random field model
> Seems to be a good model for image textures

> Two important issues
> Computation time

> How to incorporate more complicated structures into
it
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Further Reading

> Graphcut Textures
> Efficient
> Visually pleasing results

Graphcut Textures: Image and Video Synthesis Using Graph Cuts

Vivek Kwatra Arno Schadl Irfan Essa Greg Turk Aaron Bobick

GVU Center / College of Computing

Georgia Institute of Technology
http://wuw.cc.gatech.edu/cpl/projects/graphcuttextures
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This banner was generated by merging the source images in Figure 6 using our interactive texture merging technique.
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